

Ed Tile Editor

Quick Start Guide

For version 2.60.0, Windows, macOS, iPadOS, iOS.
© 2025 Chilling Moose Games | EdTech.lu

PROJECT WORKFLOW
The workflow in Ed tile editor is organized into five sections, available as tabs on the top-left corner

of the user interface:

Every step in the workflow serves as a way to create and customize the puzzle pieces that are

eventually assembled next to each other in the final tab: The Level Editor.

The usual editing flow goes like this:

1. Import your image files as sprite sheets using a simple drag & drop.

2. If you have multiple sprites in a single file (sprite sheet,) slice them into sprites.

3. Define Tile Definitions (TileDefs) by configuring sprites, animations, sizes and data.

4. Define smart Rule Brushes that automatically choose different TileDefs based on the

neighboring tiles.

5. Draw TileDefs on Levels.

Levels can have multiple boards (tile grids) where TileDefs can be drawn on. The entire project,

individual levels, or even individual boards can be exported to various easy-to-parse formats that

can be loaded in any game engine easily:

- JSON,

- ASCII Text (Verbose),

- ASCII Text with CSV grids (of characters, integer handles, or hexadecimal handles).

Aside from exporting to text, Ed supports Unity as a first-class target, exporting sliced sprite sheets,

levels, grids and scripts into ready-to-run Unity files. You can spawn Ed levels in Unity with one click.

SPRITE EDITOR

Sprite Editor is where you import image files for sprite sheets, and slice them into sprites, that can

be assigned to TileDefs and drawn on levels.

You can always switch to Sprite Editor by clicking on the first tab button on the top left corner of

the app, or by pressing F1.

You can import image files by drag & dropping them onto the app or clicking the button in front

of Sprite Sheets. By default, when you import an image file, a sprite covering the entire image is

created.

If your file is a sprite sheet, you should slice it into separate sprites. The auto slice tool allows

you to do that quickly by setting a default sprite size, or sprite count within the sprite sheet.

Once you have your sprites set up, you can immediately start drawing by switching to the Level

Editor tab.

LEVEL EDITOR

You can switch to the Level Editor tab by clicking on the last tab button on the top, or by pressing

F5.

On the left sidebar, you will see the current level and a level selection drop-down, a list of layers

(boards and other things) on the level, and below that a list of all the assets (Sprites, TileDefs, Rule

Brushes and so on) you created in the project. To toggle the visibility of the left sidebar, click the

 button on the bottom left section of the app.

 The top toolbar contains the tools you can use to draw, erase or select tiles on boards.

Simply select an asset you want to draw, a brush to draw them with, and click-and-drag on the

board to edit the level.

You can pin your favorite assets, so they always show up on top, or organize them into folders that

are always available on the left side of the editor. Quickly select assets in folders by clicking numeric

keys on your keyboard (1, 2, 3, …). When you draw assets on a board, they will also automatically

appear on the quick select pane, and can be selected by pressing SHIFT+1,2,3.

Tools in the drawing toolbar can be selected by pressing the Q, W, E, … keys, depending on their

group and where they are located. Pressing the same key multiple times cycles the selected tool in

its group. Some tools like thick brushes have additional options that can be changed by clicking

twice on their toolbar button.

ANIMATIONS
Animations are defined as a set of keyframes of sprites in a TileDef.

To quickly create an animation from a sprite sheet, select your sprite sheet in the Sprites Editor (F1)

and click the button on the top right corner of the app to open the New TileDef dialog box.

Select the sprites from the right box and add them to the list of key frames (left box,) give it a name

(Ref) and press Create. Now you can draw this animated TileDef on the level.

TERRAIN RULE BRUSHES
The Quick Terrain toolset allows

you to quickly mark specific

corner sprites of a terrain tile set

and generate rule brushes from

them. To activate Quick Terrain

mode in the Sprite Sheet Editor

(F1), click on the icon on the

top right corner of the interface.

It opens two panels: Terrain

Settings on the right side, and

Quick Set Terrain Position on the

bottom.

To start a new rule brush, click on the button in the Terrain Settings dialog box, or manually

enter a new brush name. Now simply click on a sprite on the top part, and then click on the

associated corners on the Quick Set Terrain Position panel. Once you have assembled all pieces of

the terrain rule brush, click to generate rule brushes from the marked sprites.

Once the rule brushes are generated, you can go back to the Level Editor (F5,) select the new rule

brush, and start drawing on a board. TileDefs are automatically selected based on their neighbors.

SAVING THE PROJECT – DIRECTORY STRUCTURE
There are three ways to save an Ed project: to a directory, as a package, or in the internal library.

SAVE TO DIRECTORY

This is the recommended approach for working with Ed on desktop, and especially when

collaborating in teams and committing to git. When you save to a directory, Ed creates the following

file structure:

- world.json: This file contains the base data of your project and is placed in the destination

directory’s root.

- TileDefs directory: This directory contains a single JSON file per TileDef created.

- Assets directory: The image files are placed here. If you encounter missing bitmaps (shown in

clay-pink color), you can manually move your image files to this folder and restart the app.

- world.jsons directory: Other data related to rule brushes, folders, etc. are placed as JSON

files in this directory. Levels and boards are also stored here, in JSON.

- Thumbnails directory: This directory contains thumbnails associated with various assets. You

don’t need to push this to git.

If you collaborate with others, you can add world.state.json to .gitignore, so your user preferences

are kept local. The Thumbnails directory can also be ignored.

SAVE AS PACKAGE (.MOOSEED FILE)

When you save as a package, you get a single file containing all the data mentioned above, in an

ordinary zip format, with a .mooseed extension. This is handy when you move files around on iPads

and iPhones or don’t work in a collaborative environment. You can rename this to .zip and extract it

at any time.

SAVE TO INTERNAL LIBRARY

Ed creates a folder in your user’s Documents folder (on desktop) and in a sandbox on iOS containing

auto-saves and internal library files. Every few minutes, Ed creates an auto-save for the open project

that is stored in the internal library, and also available in the Documents/MooseEd folder.

You can also manually quick-save projects to the internal library and load them easily without

having to deal with file system. This is another ideal way to work with temporary projects on iOS.

EXPORT TO JSON/ASCII
You can export the entire project, single levels, or even boards

individually, as JSON or plain-text ASCII files. Grid data can be stored as

verbose line-by-line tile definitions, or CSVs with integers, hex, or

characters, representing TileDefs.

To export the entire project to text:

Use the File > Export JSON/ASCII… menu option. You’ll get a list of

various text formats you can choose to export your project in.

If you choose any of the ASCII formats, you’ll get to configure the

indentation and whether you want the full project metadata (including

sprite sheets, rule brushes and so on) to also be exported. Exporting all

the data is usually not necessary for running the actual game.

To export an individual level or board to text:

Use the Level > Generate Script menu and select your desired format to export an entire level. To

export just the selected board, use the Level > Board > Generate Script instead.

The most complete representation of your project can be obtained when you export the entire

project as JSON (Full) or JSON (Ignore Defaults). Combining this file with what’s inside the Assets

folder, you have everything you need to load all the data in your favorite game engine.

EXPORT TO UNITY
Ed supports Unity as a first-class target game engine. If you

use Unity, you can simply rely on the one-click Unity export

functionality in Ed to quickly generate Unity asset and code

files and iteratively build your game.

To export to Unity, use the File > Unity > Settings… menu

option. Once you have your Unity export preferences

configured, you can use the Quick Export to Directory to

generate Unity files with a single click.

The Unity Export Options dialog provides various

checkboxes and settings to control what is exported and

how, but you can rely on the default

settings for an optimal experience.

Simply point to the Assets directory of

your Unity project and click Save and

Export.

When you open your Unity project, you

will see a new menu called EdTech

appearing under the GameObject

creation menu. Use it to add an

EdWorld to your scene.

The EdWorld object manages Ed data

and can spawn levels and tiles on the scene, at edit or run

time.

Another feature of EdTech for Unity is supporting level

previews: To keep things simple, but have an idea of how the

Ed level looks when spawned, previews of the Ed level are

spawned only at edit-time, making it easy to align Unity

objects with the Ed world.

Previews automatically get destroyed in play-time and the

tiles themselves are spawned instead.

EDTECH FOR UNITY
For every level in the Ed project, the EdWorld script

provides two buttons to either set that level as the

starting level that’s spawned on play-time, or spawn

preview sprites of that level for edit-mode.

If your scene is going to be specific to that level, it will be

convenient to press both buttons for the level you want.

Ed sprites are also exported and already sliced in Unity,

stored in the DefaultSpriteMap scriptable object.

Animations are also available in Unity, and animated

TileDefs play instantly and with zero additional code.

Most of the assets, including TileDefs are stored in the EdWorldData static class as objects, and can

be directly accessed in code.

Level names are also stored as const string definitions in the EdWorldData class.

All spawned tiles will have a Tile script attached to them. Additionally, any data structure that’s

marked as MonoBehaviour in Ed will have a corresponding script attached to it in Unity.

For example, if you create a data structure called Player in Ed and assign it to your player TileDef, in

Unity it will have the Player : MonoBehaviour script attached to it automatically. This way you can

create your logic in Unity, declare the class names in Ed and assign them to TileDefs, and have a

ready-to-play game every time you export from Ed to Unity.

ACCESSING SPRITES

To access a sprite by name, you can use the EdWorldExtensions.GetUnitySpriteById(EdWorld

world, string id) static function, which returns a Unity sprite. This can be used in any place in Unity as

a regular sprite, including on GUI image elements.

CALLBACK AFTER WORLD SPAWN

To have a callback after EdWorld spawns the tiles, you can set the edWorld.PostStart variable to a

method of your choice. PostStart is called after everything is spawned. There should only be one

EdWorld at any time in the scene, and it can be accessed via EdWorld.Instance static variable.

MANUALLY SPAWN A LEVEL

To manually spawn a level at any time, you can call EdWorldExtensions.SpawnLevelById(EdWorld

world, string id), passing the name of the level as the id.

